Bayesian clustering and feature selection for cancer tissue samples
نویسندگان
چکیده
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملA feature selection Bayesian approach for a clustering genetic algorithm
Feature selection is an important task in clustering problems. Some features help to find useful clusters whereas others may hinder the clustering process. In other words, some selected features can provide better clusters. Besides, the feature selection process also allows the reduction of the dataset dimensionality, improving the clustering method efficiency. This work describes a Bayesian fe...
متن کاملFeature Selection for Clustering
Clustering is an important data mining task Data mining often concerns large and high dimensional data but unfortunately most of the clustering algorithms in the literature are sensitive to largeness or high dimensionality or both Di erent features a ect clusters di erently some are important for clusters while others may hinder the clustering task An e cient way of handling it is by selecting ...
متن کاملLocalized feature selection for clustering
In clustering, global feature selection algorithms attempt to select a common feature subset that is relevant to all clusters. Consequently, they are not able to identify individual clusters that exist in different feature subspaces. In this paper, we propose a localized feature selection algorithm for clustering. The proposed algorithm computes adjusted and normalized scatter separability for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2009
ISSN: 1471-2105
DOI: 10.1186/1471-2105-10-90